Part Number Hot Search : 
LT1083 RT500 CR8PM BU4840G OP580 TFA3354 LVXT4053 AD7243AN
Product Description
Full Text Search
 

To Download AD8515AKS-R2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  rev. b information furnished by analog devices is believed to be accurate and reliable. however, no responsibility is assumed by analog devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. no license is granted by implication or otherwise under any patent or patent rights of analog devices. trademarks and registered trademarks are the property of their respective companies. one technology way, p.o. box 9106, norwood, ma 02062-9106, u.s.a. tel: 781/329-4700 www.analog.com fax: 781/326-8703 ? 2003 analog devices, inc. all rights reserved. a ad8515 1.8 v low power cmos rail-to-rail input/output operational amplifier features single-supply operation: 1.8 v to 5 v offset voltage: 6 mv max space-saving sot-23 and sc70 packages slew rate: 2.7 v/  s bandwidth: 5 mhz rail-to-rail input and output swing low input bias current: 2 pa typ low supply current @ 1.8 v: 450  a max applications portable communications portable phones sensor interfaces laser scanners pcmcia cards battery-powered devices new generation phones personal digital assistants pin configuration general description the ad8515 is a rail-to-rail amplifier that can operate from a single- supply voltage as low as 1.8 v. the ad8515 single amplifier, available in sot-23-5l and sc70-5l packages, is small enough to be placed next to sen sors, reducing external noise pickup. the ad8515 is a rail-to-rail input and output amplifier with a gain bandwidth of 5 mhz and typical offset voltage of 1 mv from a 1.8 v supply. the low supply current makes these parts ideal for battery-powered applications. the 2.7 v/ m s slew rate makes the ad8515 a good match for driving asic inputs, such as voice codecs. the ad8515 is specified over the extended industrial tempera- ture range (?0 c to +125 c). 5-lead sc70 and sot-23 (ks and rt suffixes) 1 2 3 5 4  in +in v+ out ad8515 v
rev. b e2e ad8515especifications electrical characteristics parameter symbol condition min typ max unit input characteristics offset voltage v os v cm = v s /2 16mv e40 r c < t a < +125 r c8mv input bias current i b v s = 1.8 v 2 30 pa e40 r c < t a < +85 r c 600 pa e40 r c < t a < +125 r c8na input offset current i os 110pa e40 r c < t a < +125 r c 300 pa input voltage range 0 1.8 v common-mode rejection ratio cmrr 0 v v cm 1.8 v 50 db large signal voltage gain a vo r l = 100 k w , 0.3 v v out 1.5 v 110 400 v/mv offset voltage drift d v os / d t4 m v/ r c output characteristics output voltage high v oh i l = 100 m a, e40 r c < t a < +125 r c 1.79 v i l = 750 m a, e40 r c < t a < +125 r c 1.77 v output voltage low v ol i l = 100 m a, e40 r c < t a < +125 r c10mv i l = 750 m a, e40 r c < t a < +125 r c30mv short circuit limit i sc 20 ma power supply supply current/amplifier i sy v out = v s /2 300 450 m a e40 r c < t a < +125 r c 500 m a dynamic performance slew rate sr r l = 10 k w 2.7 v/ m s gain bandwidth product gbp 5 mhz noise performance voltage noise density e n f = 1 khz 22 nv/ hz hz hz hz hz
rev. b ad8515 e3e electrical characteristics parameter symbol condition min typ max unit input characteristics offset voltage v os v cm =v s /2 16mv e40 r c < t a < +125 r c8mv input bias current i b v s = 3.0 v 2 30 pa e40 r c < t a < +85 r c 600 pa e40 r c < t a < +125 r c8na input offset current i os 110pa e40 r c < t a < +125 r c 300 pa input voltage range 0 3 v common-mode rejection ratio cmrr 0 v v cm 3.0 v 54 db large signal voltage gain a vo r l = 100 k w , 0.3 v v out 2.7 v 250 1,000 v/mv offset voltage drift d v os / d t4 m v/ r c output characteristics output voltage high v oh i l = 100 m a, e40 r c < t a < +125 r c 2.99 v i l = 750 m a, e40 r c < t a < +125 r c 2.98 v output voltage low v ol i l = 100 m a, e40 r c < t a < +125 r c10mv i l = 750 m a, e40 r c < t a < +125 r c20mv power supply power supply rejection ratio psrr v s = 1.8 v to 5.0 v, e40 r c < t a < +125 r c6585db supply current/amplifier i sy v out = v s /2 300 450 m a e40 r c < t a < +125 r c 500 m a dynamic performance slew rate sr r l = 10 k w 2.7 v/ m s gain bandwidth product gbp 5 mhz noise performance voltage noise density e n f = 1 khz 22 nv/ hz hz hz hz hz
rev. b e4e ad8515 electrical characteristics parameter symbol condition min typ max unit input characteristics offset voltage v os v cm =v s /2 16mv e40 r c < t a < +125 r c8mv input bias current i b v s = 5.0 v 5 30 pa e40 r c < t a < +85 r c 600 pa e40 r c < t a < +125 r c8na input offset current i os 110pa e40 r c < t a < +125 r c 300 pa input voltage range 0 5.0 v common-mode rejection ratio cmrr 0 v v cm 5.0 v 60 75 db large signal voltage gain a vo r l = 100 k w , 0.3 v v out 4.7 v 500 2,000 v/mv offset voltage drift d v os / d t4 m v/ r c output characteristics output voltage high v oh i l = 100 m a, e40 r c < t a < +125 r c 4.99 v i l = 750 m a, e40 r c < t a < +125 r c 4.98 v output voltage low v ol i l = 100 m a, e40 r c < t a < +125 r c10mv i l = 750 m a, e40 r c < t a < +125 r c20mv power supply power supply rejection ratio psrr v s = 1.8 v to 5.0 v, e40 r c < t a < +125 r c6582db supply current/amplifier i sy v out = v s /2 350 500 m a e40 r c < t a < +125 r c 600 m a dynamic performance slew rate sr r l = 10 k w 2.7 v/ m s gain bandwidth product gbp 5 mhz noise performance voltage noise density e n f = 1 khz 22 nv/ hz hz hz hz hz
rev. b ad8515 e5e caution esd (electrostatic discharge) sensitive device. electrostatic charges as high as 4000 v readily accumulate on the human body and test equipment and can discharge without detection. although the ad8515 features proprietary esd protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. therefore, proper esd precautions are recommended to avoid performance degradation or loss of functionality. absolute maximum ratings * (t a = 25 r c, unless otherwise noted.) supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 v input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gnd to v s differential input voltage . . . . . . . . . . . . . . . . . . 6 v or v s output short-circuit duration to gnd . . . . . . . . . . . . . . . . . . . . observe derating curves storage temperature range ks and rt packages . . . . . . . . . . . . . . . . e65 r c to +150 r c operating temperature range ad8515 . . . . . . . . . . . . . . . . . . . . . . . . . . e40 r c to +125 r c junction temperature range ks and rt packages . . . . . . . . . . . . . . . . e65 r c to +150 r c lead temperature range (soldering, 60 sec) . . . . . . . . 300 r c * stresses above those listed under absolute maximum ratings may cause perma- nent damage to the device. this is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. package type  ja *  jc unit 5-lead sot-23 (rt) 230 146 r c/w 5-lead sc70 (ks) 376 126 r c/w * q ja is specified for worst-case conditions, i.e., q ja is specified for device sol- dered in circuit board for surface-mount packages. ordering guide model temperature range package description package option ad8515art e40?c to +125?c 5-lead sot-23 rt-5 ad8515aks e40?c to +125?c 5-lead sc70 ks-5
rev. b e6e ad8515etypical performance characteristics bandwidth (mhz) 450 400 200 4.65 4.95 4.70 supply current (  a) 4.75 4.80 4.85 4.90 350 300 250 v s = 2.5v tpc 1. supply current vs. bandwidth 450 400 0 supply current (  a) 200 150 100 50 300 250 350 supply voltage (v) 6 12345 0 tpc 2. supply current vs. supply voltage temperature (  c) 500 300 e50 150 i sy (  a) 25 50 75 125 400 350 e25 0 100 450 v s = 5v tpc 3. i sy vs. temperature bandwidth 6 0 4.65 4.95 supply voltage (v) 4.70 4.75 4.85 5 4 2 4.80 1 3 4.90 tpc 4. supply voltage vs. bandwidth load current (ma) 160 140 0 020 5 d output voltage (mv) 10 15 80 60 40 20 120 100 v ol v oh v s = 2.5v tpc 5. output voltage to supply rail vs. load current 270 225 e180 180 135 90 45 0 e45 e90 e135 phase e degrees frequency (hz) 1k 50m 10k 1m 10m 100k e80 80 60 40 20 0 e20 e40 e60 100 120 gain (db) gain phase v s = 2.5v amplitude = 20mv tpc 6. gain and phase vs. frequency
rev. b ad8515 e7e frequency (hz) 10k 30m 100k a cl (db) 1m 10m 120 100 e80 80 60 40 20 0 e20 e40 e60 v s = 2.5v g = 100 g = 10 g = 1 tpc 7. a cl vs. frequency frequency (hz) 120 80 e60 10k 100m 100k cmrr (db) 1m 10m 40 0 e20 e40 e80 20 60 100 v s = 2.5v amplitude = 50mv tpc 8. cmrr vs. frequency frequency (hz) 100 10m 1k psrr (db) 10k 100k 1m 120 100 e60 80 60 40 20 10 0 e20 e40 v s = 2.5v amplitude = 50mv + psrr epsrr tpc 9. psrr vs. frequency temperature (  c) 96 76 e50 150 psrr (db) 50 84 80 0 100 92 88 v s = 2.5v tpc 10. psrr vs. temperature v os (mv) 430 0 e6.24 e4.27 number of amplifiers e2.29 e0.32 1.66 3.63 86 172 258 344 v s = 2.5v tpc 11. v os distribution frequency (hz) 150 1k 10m output impedance (  ) 50 10k 100k 1m 0 100 gain = 100 gain = 10 gain = 1 v s = 2.5v tpc 12. output impedance vs. frequency
rev. b ad8515 ? temperature (  c) 15 25 16 ?0 150 i sc (ma) 050 21 20 18 100 17 19 23 24 22 ? sc +i sc v s = 5v tpc 13. i sc vs. temperature frequency (hz) 0 0 0 vo ltag e ( 1 3  v/div) 0 0 0 0 0 0 v s = 2.5v tpc 14. voltage noise density time (1s/div) 0 0 0 00 0 vo lta ge (200mv/div) 00000000 0 0 0 0 0 0 v s = 2.5v gain = 100k  tpc 15. input voltage noise time (200  s/div) 0 0 0 00 0 vo lta ge (2v/div) 00000000 0 0 0 0 0 0 v s = 2.5v v in = 6.4v v out v in tpc 16. no phase reversal time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 2.5v c l = 50pf v in = 200mv tpc 17. small signal transient response time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 2.5v c l = 500pf v in = 200mv tpc 18. small signal transient response
rev. b ad8515 e9e time (1  s/div) 0 0 0 00 0 vo lta ge (1v/div) 00000000 0 0 0 0 0 0 v s = 2.5v c l = 300pf v in = 4v tpc 19. large signal transient response time (2  s/div) 0 0 0 00 0 vo ltag e 00000000 0 0 0 0 0 0 v s = 1.5v gain = e40 v in = 100mv v in v out 100mv 0v 0v 2v tpc 20. saturation recovery time (2  s/div) 0 0 0 00 0 vo ltag e 00000000 0 0 0 0 0 0 v s = 1.5v gain = e40 v in = 100mv e100mv 0v 2v 0v v in v out tpc 21. saturation recovery frequency (hz) 10k 100m 100k cmrr (db) 1m 10m 120 100 e80 80 60 40 20 0 e20 e40 e60 v s = 1.5v amplitude = 50mv tpc 22. cmrr vs. frequency time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 0.9v c l = 50pf v in = 200mv tpc 23. small signal transient response frequency (hz) 10k 30m 100k gain (db) 1m 10m 120 100 e80 80 60 40 20 0 e20 e40 e60 phase (degrees) 270 225 e180 180 135 90 45 0 e45 e90 e135 v s = 0.9v amplitude = 20mv tpc 24. gain and phase vs. frequency
rev. b ad8515 e10e frequency (hz) 200 1k 10m output impedance (  ) 50 10k 100k 1m 0 100 gain = 100 gain = 10 gain = 1 v s = 0.9v 150 tpc 25. output impedance vs. frequency time (200  s/div) 0 0 0 00 0 vo lta ge (1v/div) 00000000 0 0 0 0 0 0 v s = 0.9v v in = 3.2v v in v out tpc 26. no phase reversal temperature (  c) 11 3 e50 150 v ol (mv) 50 7 5 0 100 9 v s = 5v i l = 750  a tpc 27. v ol vs. temperature temperature (  c) 4.995 4.990 e50 150 v oh (v) 50 4.994 4.992 0 100 4.991 4.993 v s = 5v i l = 750  a tpc 28. v oh vs. temperature temperature (  c) 80 65 77 71 68 74 e50 150 cmrr (db) 50 0 100 v s = 5v tpc 29. cmrr vs. temperature
rev. b ad8515 e11e functional description the ad8515, offered in space-saving sot-23 and sc70 pack- ages, is a rail-to-rail input and output operational amplifier that can operate at supply voltages as low as 1.8 v. this product is f ab ri cat ed u sin g 0.6 micron cmos to achieve one of the best power consumption to speed ratios (i.e., bandwidth) in the industry. with a small amount of supply current (less than 400 m a), a wide unity gain bandwidth of 4.5 mhz is available for signal processing. the input stage consists of two parallel, complementary, differential pairs of pmos and nmos. the ad8515 exhibits no phase rever- sal as the input signal exceeds the supply by more than 0.6 v. currents into the input pin must be limited to 5 ma or less by the use of external series resistance(s). the ad8515 has a very robust esd design and can stand esd voltages of up to 4,000 v. power consumption vs. bandwidth one of the strongest features of the ad8515 is the bandwidth stability over the specified temperature range while consuming small amounts of current. this effect is shown in tpc 1 through tpc 3. t his product solves the speed/power requirements for many applications. the wide bandwidth is also stable even when operated w ith low supply voltages. tpc 4 shows the relationship between the supply voltage versus the bandwidth for the ad8515. the ad8515 is ideal for battery-powered instrumentation and handheld devices since it can operate at the end of discharge voltage of most popular batteries. table i lists the nominal and end of discharge voltages of several typical batteries. table i. typical battery life voltage range end of discharge battery nominal voltage (v) voltage (v) lead-acid 2 1.8 lithium 2.6e3.6 1.7e2.4 nimh 1.2 1 nicd 1.2 1 carbon-zinc 1.5 1.1 driving capacitive loads most amplifiers have difficulty driving large capacitive loads. additionally, higher capacitance at the output can increase the amount of overshoot and ringing in the amplifier?s step response and could even affect the stability of the device. this is due to the degradation of phase margin caused by additional phase lag from the capacitive load. the value of capacitive load that an amplifier can drive before oscillation varies with gain, supply voltage, input signal, temperature, and other parameters. unity gain is the most challenging configuration for driving capacitive loads. the ad8515 is capable of driving large capacitive loads without any external compensation. the graphs in figures 1a and 1b show the amplifier?s capacitive load driving capability when configured in unity gain of +1. the ad8515 is even capable of driving higher capacitive loads in inverting gain of e1, as shown in figure 2. time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 2.5v c l = 50pf gain = +1 figure 1a. capacitive load driving @ c l = 50 pf time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 2.5v c l = 500pf gain = +1 figure 1b. capacitive load driving @ c l = 500 pf time (1  s/div) 0 0 0 00 0 vo lta ge (100mv/div) 00000000 0 0 0 0 0 0 v s = 0.9v c l = 800pf gain = e1 figure 2. capacitive load driving @ c l = 800 pf
rev. b ad8515 e12e full power bandwidth the slew rate of an amplifier determines the maximum frequency at which it can respond to a large input signal. this frequency (known as full power bandwidth, fpbw ) can be calculated from the equation fpbw sr v peak = 2 p for a given distortion. the fpbw of ad8515 is shown in figure 3 to be close to 200 khz. time (2  s/div) 0 0 0 00 0 vo lta ge (2v/div) 00000000 0 0 0 0 0 0 v in v out figure 3. full power bandwidth a micropower reference voltage generator many single-supply circuits are configured with the circuit biased to one-half of the supply voltage. in these cases, a false ground reference can be created by using a voltage divider buffered by an amplifier. figure 4 shows the schematic for such a circuit. the two 1 m w resistors generate the reference voltages while drawing only 0.9 m a of current from a 1.8 v supply. a capacitor connected from the inverting terminal to the output of the op amp provides compensation to allow for a bypass capacitor to be connected at the reference output. this bypass capacitor helps establish an ac ground for the reference output. 0.9v to 2.5v ad8515 1 3 2 c2 0.022  f r4 100  c1 1  f ve v+ 1.8v to 5v u1 r2 1m  c3 1  f r1 1m  r3 10k  figure 4. micropower voltage reference generator a 100 khz single-supply second order band-pass filter the circuit in figure 5 is commonly used in portable applications where low power consumption and wide bandwidth are required. this figure shows a circuit for a single-supply band-pass filter with a center frequency of 100 khz. it is essential that the op amp has a loop gain at 100 khz in order to maintain an accurate center frequency. this loop gain requirement necessitates the choice of an op amp with a high unity gain crossover frequency, such as the ad8515. the 4.5 mhz bandwidth of the ad8515 is sufficient to accurately produce the 100 khz center frequency, as the response in figure 6 shows. when the op amp?s bandwidth is close to the filter?s center frequency, the amplifier?s internal phase shift causes excess phase shift at 100 khz, which alters the filter?s response. in fact, if the chosen op amp has a bandwidth close to 100 khz, the phase shift of the op amps will cause the loop to oscillate. a common-mode bias level is easily created by connecting the noninverting input to a resistor divider consisting of two resistors connected between vcc and ground. this bias point is also decoupled to ground with a 1 m f capacitor. f rc f rc h r r vcc v v l h = = =+ =- 1 211 1 211 1 2 1 18 5 0 p p . where: f l is the low e3 db frequency. f h is the high e3 db frequency. h 0 is the midfrequency gain. v out ad8515 1 3 4 c6 10pf ve v+ vcc u9 r6 1m  r8 1m  r2 20k  r5 2k  r1 5k  c1 2nf v11 400mv vcc c3 1  f 0 0 figure 5. second order band-pass filter frequency (hz) 2 0 1k 100m 10k output voltage ( v) 100k 1m 10m 1 figure 6. frequency response of the band-pass filter
rev. b ad8515 e13e wien bridge oscillator the circuit in figure 7 can be used to generate a sine wave, one of the most fundamental waveforms. known as a wien bridge oscillator, it has the advantage of requiring only one low power amplifier. this is an important consideration, especially for battery- operated applications where power consumption is a critical issue. to keep the equations simple, the resistor and capacitor values used are kept equal. for the oscillation to happen, two conditions have to be met. first, there should be a zero phase shift from the input to the output, which will happen at the oscillation frequency of f rc osc = 1 210 10 p second, at this frequency, the ratio of vout to the voltage at +input (pin 3) has to be 3, which means that the ratio of r11/r12 should be greater than 2. ad8515 1 3 2 ve v+ vcc u10 c10 1nf r13 1k  r11 2.05k  c9 1nf r10 1k  r12 1k  vee figure 7. low power wien bridge oscillator high frequency oscillators can be built with the ad8515 due to its wide bandwidth. using the values shown, an oscillation frequency of 130 khz is created and is shown in figure 8. if r11 is too low, the oscillation might converge; if too large, the oscillation will diverge until the output clips (v s = 2.5 v, f osc = 130 khz). time (2  s/div) 0 0 0 00 0 vo lta ge (2v/div) 00000000 0 0 0 0 0 0 figure 8. output of wien bridge oscillator
rev. b ad8515 ?4 outline dimensions 5-lead small outline transistor package [sot-23] (rt-5) dimensions shown in millimeters pin 1 1.60 bsc 2.80 bsc 1.90 bsc 0.95 bsc 1 3 4 5 2 0.22 0.08 0.55 0.45 0.35 10  5  0  0.50 0.35 0.15 max seating plane 1.45 max 1.30 1.15 0.90 2.90 bsc compliant to jedec standards mo-178aa 5-lead thin shrink small outline transistor package [sc70] (ks-5) dimensions shown in millimeters 0.30 0.15 1.00 0.90 0.70 seating plane 1.10 max 0.22 0.08 0.46 0.36 0.26 3 5 4 1 2 2.00 bsc pin 1 2.10 bsc 0.65 bsc 1.25 bsc 0.10 max 0.10 coplanarity compliant to jedec standards mo-203aa
rev. b ad8515 e15e revision history location page 4/03?data sheet changed from rev. a to rev. b. change to figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2/03?data sheet changed from rev. 0 to rev. a. added new sc70 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . universal changes to features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 changes to specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 changes to absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 changes to ordering guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 changes to tpc 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 changes to tpc 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 changes to tpc 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 changes to tpc 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 changes to tpc 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 added new tpc 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 changes to functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 updated to outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
c03024??/03(b) ?6


▲Up To Search▲   

 
Price & Availability of AD8515AKS-R2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X